RELIABILITY AND VARIABILITY IN CMOS DEVICES

PRESENT STATUS OF CIRCUIT SIMULATIONS

Time-zero + Reliability+Projection = Combined effect

- nFETs 11G
 - $V_{ds} = 50\text{mV}$
 - High $V_{\text{THEX}} > +5.4\sigma$
 - Mid $V_{\text{THEX}} \pm 3.7\sigma$
 - Low $V_{\text{THEX}} < -5.4\sigma$

- $T = 125^\circ\text{C}$
 - $V_{G,\text{stress}} = -2\text{ V}$
 - $V_{G,\text{relax}} = 0\text{ V}$

- Acceleraion for BTI, HCI, ...

- Mean ΔV_{th}

- normal Distribution (σ)

- V_{THEX} (V)

- P

- $0 \rightarrow$ operating time

- $0 \rightarrow$ operating time

© 2016 imec, B. Kaczer / ERMAVSS Workshop / March 18th 2016 / Dresden, Germany
CIRCUIT SIMULATIONS WITH VAR/REL

RTN @ time-zero

BTI, HCl,… variability

Time-zero

Rel/Var+Projection

Combined effect
MOTIVATION

How to best describe and how to include time-dependent variability in circuit design
OUTLINE

Motivation

Time-dependent variability
 ▶ The short version: Gate-oxide Breakdown (I_G)
 ▶ The full scoop: BTI and RTN (I_D)
 ▶ Reliability from Defect-centric perspective
 ▶ Measuring and modeling single defect properties
 ▶ Distributions of single defect properties
 ▶ Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
APPEARANCE OF TIME-DEPENDENT VARIABILITY:
BREAKDOWN IN THIN GATE OXIDES WIDELY DISTRIBUTED

- Gate oxide breakdown (TDDB) statistical distribution is linked to number of traps in percolation path
- With scaled down dimensions the intrinsic spread on the reliability parameters (e.g. t_{BD} or Q_{BD}) tends to increase (percolation model)

\[F(t) = 1 - \exp \left[-\left(\frac{t}{\eta} \right)^\beta \right] \]
CIRCUIT FAILURE DISTRIBUTION CAN BE PROJECTED FROM DISTRIBUTIONS OF SINGLE DEVICES

\[V_{OSC} = 4.4 \text{ V} \]

\[V_{INP} = 0 \text{ V} \]

\[F_{osc}(t) = 1 - \left[1 - F_n(t) \right]^{N_n} \times \left[1 - F_p(t) \right]^{N_p} \]

\(t_{BD} \) distribution of individual n- and pFETs scales perfectly to ring oscillator time-to-1st-BD distribution

Kaczer et al., TED 49, p. 500 (2002); Microel. Reliab., 2002

© 2016 imec, B. Kaczer / ERMAVSS Workshop / March 18th 2016 / Dresden, Germany
IN ADDITION, DISTRIBUTION OF BD PROPERTIES

• Distribution BD locations

• Distribution BD magnitudes

Alam et al., TED 2002
DISTRIBUTIONS OF BD IMPACT ON CIRCUIT PARAMS

• Example: Impact on RO frequency, power consumption

Kaczer et al., TED 49, p. 500 (2002); Microel. Reliab., 2002
http://www.youtube.com/watch?v=BdFydfGAx3w

• Other examples:

Wang et al., IEEE MTDT 2006

© 2016 imec, B. Kaczer / ERMAVSS Workshop / March 18th 2016 / Dresden, Germany
OUTLINE

Motivation

Time-dependent variability

- The short version: Gate-oxide Breakdown (I_G)
- The full scoop: BTI and RTN (I_D)
 - Reliability from Defect-centric perspective
 - Measuring and modeling single defect properties
 - Distributions of single defect properties
 - Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
In deeply-downscaled technologies, only a handful of random defects will be present in each device.

Number of charged defects will be increasing with operating time → **time-dependent variability** in addition to time-0 variability.
INDIVIDUAL DEFECTS RESULT IN TIME-DEPENDENT VARIABILITY

- Individual stochastically-behaving **charged** defects will affect FET channel current
- Individual defects have considerable *relative* impact on deeply-scaled devices
- These **time-dependent variations** require adaptations in circuit design to account for **time-dependent statistical distributions** of device parameters
IN GENERAL, EACH DEFECT CHARACTERIZED BY

• capture time τ_c
• emission time τ_e
• impact on device (ΔI_d, ΔV_{th}, ΔI_g…)
• occupancy (0 or 1) at given time

(covers BTI, RTN, SILC, ... easily extensible to other mechanisms)

EACH DEVICE CHARACTERIZED BY

• number of defects N_T with above properties

Example: defects in 3 different devices

Depend on
• spatial position
• energy position
• lattice relax. energy
• ...

Kaczer et al., IRPS 2011
DEFECT-CENTRIC VIEW OF RELIABILITY

From individual defect properties to logic gate level and beyond

Understanding of degradation mechanisms at individual defect level is essential for simulations of time-dependent variability in circuits
OUTLINE

Motivation

Time-dependent variability

► The short version: Gate-oxide Breakdown (I_G)
► The full scoop: BTI and RTN (I_D)
 ► Reliability from Defect-centric perspective
 ► Measuring and modeling single defect properties
 ► Distributions of single defect properties
 ► Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
SIMPLE EXPERIMENTAL SETUP

$L \times W = 70 \times 90 \text{ nm}^2$

DC or AC stress

$V_G (V)$

V_{STRESS}

t_{STRESS}

t_{H}

t_{L}

$time (s)$

Source current $I_s (\mu A)$

t_{RELAX}

t_{STRESS}

$m.nSi$

Poly-Si

SiO(N)

p^+

p^+

$n-Si$

-0.1V

ΔI_s to ΔV_{th}

Initial I_s-V_G used to convert

\cdot M. Toledano et al., IRPS 2011

\cdot B. Kaczer et al., IRPS 2005 & 2008

© 2016 imec, B. Kaczer
WHAT WE CAN MEASURE

- Emission time of a **single** trap
- (Average) **single** trap occupancy
- Capture time of a **single** trap
- Impact of a **single** trap on FET chars for multiple traps

As a function of V, T, AC duty

Full IV after charging of a **single** trap

TDDS spectrum

Grasser et al., IRPS 2010; Toledano et al., INFOS 2011; Franco et al., IRPS 2012
NON-RADIATIVE MULTIPHONON MODEL REPRODUCES VOLTAGE AND TEMPERATURE DEPENDENCES

2-component process

Relaxation MPE

Typical RTN window

\[\tau_c(S), \tau_e(S), f_p(\cdot) \]

Data by H. Reisinger, Infineon
Grasser et al., IRPS 2009, 2010;
IEDM 2009, 2010;
PRB 2010

Schanovsky, Görs, and Grasser
OUTLINE

Motivation

Time-dependent variability

► The short version: Gate-oxide Breakdown (I_G)
► The full scoop: BTI and RTN (I_D)
 ► Reliability from Defect-centric perspective
 ► Measuring and modeling single defect properties
 ► Distributions of single defect properties
► Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
Coupling = \frac{kT}{q} \frac{\partial \ln \tau}{\partial V_G}

“slope” of \(\tau(V) \) plot

Rzepa et al., SISPAD 2015

Miki et al., IEDM 2012
... AND BTI (AND CAPTURE/EMISSION TIME MAPS IN LARGE DEVICES)

\[\tau_e(s) \]

\[-V_G (V) \]

\[\tau_c(s) \]

\[V_G^L = -0.35 \text{ V}, \quad V_G^H = -1.45 \text{ V} \]

Capture/Emission Time (CET) Map
INCORPORATION OF WORKLOAD DEPENDENCE INTO CIRCUIT SIMULATIONS

Defect properties

Workload

log(τ_c) vs log(τ_e)

CET-active map describes the distribution of the occupied traps after workload specific for each device.
ΔV_{TH}'S DUE TO SINGLE TRAPPED CHARGES
~EXPONENTIALLY DISTRIBUTED

$\tau_e(V, T)$

$\tau_c(V, T)$

(size of bubble represents impact)

$f_1(\Delta V_{th}, \eta) = \frac{e^{\frac{-\Delta V_{th}}{\eta}}}{\eta}$

$\eta = 4.75$ mV

$t_{stress} = 1900$ s

$\eta (V) =$ expectation value = average shift per elementary charge
CAUSE: RANDOM DOPANT FLUCTUATIONS IN THE CHANNEL

Channel current non-uniform: flows via percolation paths

- Most traps influence channel current flow little
- A few traps influence channel current a lot
SCALING OF η

Average shift per q

$$\eta = \frac{B \eta}{WL}$$

Scales reciprocally with gate area

Scales with t_{inv} and N_A (via $x_d(V_B)$)

$A = (2H_{fin} + W)L$ (nm2)

Scales with t_{inv} and N_A (via $x_d(V_B)$)

J. Franco et al., IRPS 2012 & 2013
DIFFERENT TECHNOLOGIES HAVE DIFFERENT SUSCEPTIBILITY TO TRAPS

Single trap ΔV_{th} distribution in presence of trapped charges

$N_T = 5 \times 10^{11} \text{ cm}^{-2}$

$N_T = 1 \times 10^{12} \text{ cm}^{-2}$

$W_{Bulk/FDSOI} = W_{eff. \text{FinFET.}} = 60 \text{nm}$

RDD, LER, MGG

Uniform

1-CDF

Threshold shift ΔV_T (mV)

© 2016 imec, B. Kaczer / ERMAVSS Workshop / March 18th 2016 / Dresden, Germany
OUTLINE

Motivation

Time-dependent variability

▶ The short version: Gate-oxide Breakdown (I_G)
▶ The full scoop: BTI and RTN (I_D)
 ▶ Reliability from Defect-centric perspective
 ▶ Measuring and modeling single defect properties
 ▶ Distributions of single defect properties
 ▶ Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
BTI STATISTICS FULLY DESCRIBED BY DEFECT-CENTRIC DISTRIBUTION

\[H_{\eta,N_T}(\Delta V_{th}) = \sum_{n=0}^{\infty} e^{-N_T} \frac{N_T^n}{n!} \left[1 - \frac{n}{n!} \Gamma(n, \Delta V_{th}/\eta)\right] \]

- Known statistics \rightarrow all moments can be derived
- Corollary: reporting “best” devices a delusion [Franco et al., IEDM 2014]

\[\eta = \langle \text{single defect impact} \rangle \]
\[N_T(t) = \langle \# \text{ of active defects per device} \rangle \]
IMPORTANCE OF CORRECT STATISTICS FOR V_{MIN} PREDICTION

II. BTI VARIABILITY FRAMEWORKS: A COMPARISON

Both Rauch [1, 3] and Kaczer et al. [4] have published frameworks that aim to comprehend BTI variability in ultra-scaled MOSFETs through the use of Dispensive Skellam (DS) and Exponential-Poisson (EP) distribution statistics respectively. The corresponding cumulative distribution

Figure 11. Time-zero and post-aging VT distributions on 22nm data-sets of (top) ~ 3,100 transistors and (bottom) ~ 92,000 transistors are studied to understand potential deviations from normality due to aging degradation.

Bias Temperature Instability Variation on SiON/Poly, HK/MG and Trigate Architectures

C. Prasad, M. Agostinelli, J. Hicks, S. Ramey
Logic Technology Development Quality & Reliability, Intel Corporation, Hillsboro, Oregon 97124, U.S.A.
Primary Author Contact: chetan.prasad@intel.com

C. Auth, K. Mistry, S. Natarajan, P. Packan, I. Post
Portland Technology Development, Intel Corporation, Hillsboro, Oregon 97124, U.S.A.

S. Bodapati, M. Giles, S. Gupta, S. Mudanai
Design and Technology Solutions, Intel Corporation, Hillsboro, Oregon 97124, U.S.A.

K. Kuhn
Components Research, Intel Corporation, Hillsboro, Oregon 97124, U.S.A.

Figure 14. Actual assessment of V_{MIN} on a circuit block with over 20,000 repeated instances demonstrates the importance of using the correct statistical variation framework for BTI simulations.
APPLICATIONS OF DEFECT-CENTRIC DISTRIBUTION

- **Si BTI**

 - Si Channel Hot Carrier (CHC)

 - Stress time dependence

 - Stress time dependence

 - L. Procel et al., accepted EDL

- **SiGe BTI**

 - Tail of the distribution

 - Average

 - J. Franco et al., TED 2013

- **InGaAs finFET BTI**

 - J. Franco et al., IEDM 2014
MULTIMODAL TIME-DEPENDENT STATISTICS DERIVED

32 K FET array

NFETs: Bimodal distribution

\[H_{\eta_1,\eta_2,N_{T1},N_{T2}}(\Delta V_{th}) = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \frac{e^{-N_{T1}}}{n_1!} \frac{e^{-N_{T2}}}{n_2!} F_{n_1,n_2,\eta_1,\eta_2}(\Delta V_{th}) \]

P. Weckx et al., IRPS 2015
see also A. Subirats et al., TED 2015

Note: circuits are also designed to measure time-dep’t var!
CONVERTING BETWEEN MINDSETS

Time-dependent variability

Technology
Avrg. number of defects N_T
Average impact per defect η

$N_T(t) = 2\frac{\langle \Delta V_{th}(t) \rangle^2}{\sigma_{\Delta V_{th}}^2}$

$\eta = \frac{\sigma_{\Delta V_{th}}^2}{2\langle \Delta V_{th}(t) \rangle}$

Design
Average shift $\langle \Delta V_{th} \rangle$
Variability $\sigma_{\Delta V_{th}}$

$\langle \Delta V_{th}(t) \rangle = \eta N_T(t)$

$\sigma_{\Delta V_{th}}^2(t) = 2\eta^2 N_T(t)$

$\sigma_{\Delta V_{th}}^2(t) = 2\eta \langle \Delta V_{th}(t) \rangle$

• η is a measure of time-dependent (dynamic) variability due to RTN, BTI, HCl, etc.
• η can be extracted from the ΔV_{th} distribution
OUTLINE

Motivation

Time-dependent variability

▸ The short version: Gate-oxide Breakdown (I_G)
▸ The full scoop: BTI and RTN (I_D)
 ▸ Reliability from Defect-centric perspective
 ▸ Measuring and modeling single defect properties
 ▸ Distributions of single defect properties
 ▸ Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED

M. Simicic et al., IIRW 2015

V. Putcha et al., IIRW 2015

<table>
<thead>
<tr>
<th>FORCE</th>
<th>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESIGNED</td>
</tr>
<tr>
<td>FORCE</td>
<td>TIME-0 & TIME-DEP’T VAR ARRAY DESigned</td>
</tr>
</tbody>
</table>

Transmission gates, level shifters, shift registers

pMOS 150x100

pMOS 30x3x100

pMOS 90x100

pMOS 30x100

pMOS 30x200

pMOS 30x300

nMOS 30x300

nMOS 30x200

nMOS 30x100

nMOS 90x100

nMOS 30x3x100

nMOS 150x100

54 432 DUTS

1 000 DUTS

1 400 DUTS

© 2016 imec, B. Kaczer / ERMASVSS Workshop / March 18th 2016 / Dresden, Germany
TIME ZERO VARIABILITY FROM ARRAY

PMOS devices with minimum length have a higher variance:

- Explained by the nonlinear interplay of the LER with the short channel effect in minimum length devices

\[\sigma_{V_{TH0}}^2 = \frac{A_{vth}^2}{WL} \]

[D. Reid, A. Asenov, TED, vol. 57, no. 11, 2010.]

M. Simicic et al., IIRW 2015
TIME-DEPENDENT VARIABILITY FROM ARRAY

\(t_{\text{stress}} = 1000 \text{s} \)
\(V_{\text{stress}} = -1.4 \text{ V} \)
\(V_{\text{relax}} = -0.55 \text{ V} \)
\(LW = 30 \times 100 \text{ nm}^2 \)

\[\eta = \frac{B\eta}{WL} \]

\[N_T = N_{ot} \cdot WL \]

Recall:
\[\langle \Delta V_{th}(t) \rangle = \eta N_T(t) \]

\[\sigma_{\Delta V_{th}}^2(t) = 2\eta \langle \Delta V_{th}(t) \rangle \]

M. Simicic et al., IRPS 2016
INITIAL AND TIME-DEPENDENT VARIABILITY

Technology characterized by initial (time-zero) and time-dependent variances

- pFET this array (40 nm foundry)
- nFET this array (40 nm foundry)
TIME-DEPENDENT VAR ADDS TO TIME-0 VARIABILITY

\[V_{TH}(t) = V_{TH0} + \Delta V_{TH}(t) \]

Initial \(V_{TH0} \) variability

Time-dependent \(\Delta V_{TH} \) variability

\[\sigma^2_{\Delta V_{TH}}(t) = 2\eta \left\langle \Delta V_{TH}(t) \right\rangle \quad \text{&} \quad \eta = \frac{B_{\eta}}{WL} \]

Total \(V_{th} \) distribution

\[K(V_{TH}) = \int_0^\infty g_{V_{TH0},\sigma_{TH0}}(V_{TH} - V) H_{\eta,\Delta V_{TH}/\eta}(V) dV \]

Low \(V_{TH} \) (\(\sigma = 28 \text{mV} \))

Mid \(V_{TH} \) (\(\sigma = 3.7 \sigma \))

High \(V_{TH} \) (\(\sigma = 5.4 \sigma \))

LxW = 35x90 nm²

Kuhn et al., TED 2011

T. Mizutani et al., IEDM 2013

Kaczer et al., EDL 2015

T. M. Mizutani et al., IEDM 2013
OUTLINE

Motivation

Time-dependent variability

▸ The short version: Gate-oxide Breakdown (I_G)
▸ The full scoop: BTI and RTN (I_D)
 ▸ Reliability from Defect-centric perspective
 ▸ Measuring and modeling single defect properties
 ▸ Distributions of single defect properties
 ▸ Multiple-defect statistics

Combining time-dependent and time-0 variabilities

Combined variability in circuits
DIFFERENT WAYS TO INTRODUCE DEGRADATION INTO CIRCUIT SIMULATIONS

LEVEL 1
Constant stress → Mean degradation

LEVEL 2
Multi stress → Mean degradation

LEVEL 3
Multi stress → Mean degradation + variability

LEVEL 4
Multi stress → Variability + RTN

Complexity, accuracy

Constant stress → Mean degradation

Multi stress → Mean degradation

Multi stress → Mean degradation + variability

Multi stress → Variability + RTN

<ΔV_th>
FETs IN STANDARD CIRCUIT NETLIST INSTANTIATED WITH INDIVIDUAL TRAPS
THE CIRCUIT IS SOLVED WITH INDIVIDUAL DEFECT BIAS-TIME (I.E., WORKLOAD) DEPENDENCES
“ATOMISTIC” CIRCUIT SIMULATOR: ALLOWS TO FOLLOW INDIVIDUAL DEFECT EVENTS

Kaczer et al., IRPS 2011
DIFFERENT WAYS TO INTRODUCE DEGRADATION INTO CIRCUIT SIMULATIONS

LEVEL 1

Constant stress → Mean degradation

LEVEL 2

Multi stress → Mean degradation

LEVEL 3

Multi stress → Mean degradation + variability

LEVEL 4

Multi stress → Variability + RTN

Complexity, accuracy
IMPACT OF TIME-DEPENDENT VARIABILITY: EXAMPLES

Low-sigma designs: logic

High-sigma designs: memory

Product Binning
NON-MC PROPAGATION OF DISTRIBUTIONS TO OUTPUT PARAMETER VIA RESPONSE SURFACE

Projected total V_{th} distributions

$$g(\xi) \int_{C_i} g(\xi) d\xi$$

SRAM SNM response surface

SRAM SNM response surface

Projections to $\pm 7\sigma$ possible!
THE DEFECT-CENTRIC PERSPECTIVE OF DEVICE AND CIRCUIT RELIABILITY—FROM INDIVIDUAL DEFECTS TO CIRCUITS

- Time-dependent variability needs to be considered in addition to time-zero variability.

- Complete methodology developed from test circuit layout to time-dependent variability-aware design.

© 2016 imec, B. Kaczer / ERMAVSS Workshop / March 18th 2016 / Dresden, Germany
THE PRESENTER IS THANKFUL TO

- H. Reisinger, K. Rott,...
- A. Asenov, S. Amoroso, L. Gerrer, C. Millar, R. Hussin, F. Buchori...
- V. Afanas’ev, A. Stesmans, ...
- G. Gielen, S. Mahato, E. Maricau, P. De Wit, ...
- A. Kerber, T. Nigam, E. Cartier, E. Wu, J. Stathis ...
- J. Martin-Martinez, R. Fernandez, R. Rodriguez, M. Nafria...
- J. Zhang, Z. Ji, M. Duan, ...
- G. Wirth, V. V. de Almeida Camargo, M. B. da Silva, ...
- C. Chen, J. Watt, L. Li, K. Chanda,...
- V. Huard,...
- F. Crupi, L. Trojman, L. M. Procel,...
- A. Chaudhary, S. Mukhopadhyay, S. Mahapatra, A. Alam, ...
- P. Pfeifer, Z. Pliva, ...
- M. Karner, C. Kernstock, O. Baumgartner...
- K.-U. Giering, R. Jancke, D. Helms...
- A. Kuo, P. Tsang...